# **COURSES OF STUDIES**

FOR

THREE YEAR DEGREE COURSE

IN

# **SCIENCE HONOURS**

# MATHEMATICS HONOURS

# **Choice Based Credit System(CBCS)**

First & Second Semester Examination – 2019-20 Third & Fourth Semester Examination – 2020-21 Fifth & Sixth Semester Examination – 2021-22



GOVERNMENT AUTONOMOUS COLLEGE, PHULBANI, KANDHAMAL

| <b>SYLLABI FOR</b> | CBCS | COU | RSE |
|--------------------|------|-----|-----|
|--------------------|------|-----|-----|

| Sem | CORE<br>COURESE<br>(14) | Ability<br>Enhancement<br>Compulsory<br>Course (AECC)<br>(2) | Ability<br>Enhancement<br>Elective Course<br>(AEEC) (2)<br>(Skill Based) | Elective:<br>Discipline<br>Specific DSE<br>(4) | Elective:<br>Generic<br>(GE)<br>(4) |
|-----|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|
| I   | CORE-I                  | AFCC-I                                                       |                                                                          |                                                | GE-IA                               |
|     | CORE-II                 |                                                              |                                                                          | 60                                             |                                     |
| II  | CORE-III                | AFCC-II                                                      |                                                                          | QN                                             | GE-1B                               |
|     | CORE -IV                | ALCC-II                                                      |                                                                          | er í                                           | GE-ID                               |
|     | CORE-V                  |                                                              | $\langle e \rangle$                                                      | 0                                              |                                     |
| III | CORE-VI                 |                                                              | SEC-II                                                                   |                                                | GE-2A                               |
|     | CORE-VII                |                                                              | S                                                                        |                                                |                                     |
|     | CORE-VIII               |                                                              | 0                                                                        |                                                |                                     |
| IV  | CORE-IX                 | ~01.                                                         | SEC-I                                                                    | GE                                             | GE-2B                               |
|     | CORE-X                  | 0                                                            |                                                                          |                                                |                                     |
| V   | CORE-XI                 |                                                              |                                                                          | DSE-I                                          |                                     |
| V   | CORE-XII                |                                                              |                                                                          | DSE-II                                         |                                     |
|     | CORE-XIII               |                                                              |                                                                          | DSE-III                                        |                                     |
|     | CORE-XIV                |                                                              |                                                                          | DSE-IV<br>/ Project                            |                                     |

# YEAR & SEMESTER-WISE PAPERS & CREDITS AT A GLANCE

| Three-Year (6-Semester) CBCS Programme (B.Sc. Hons) (Mathematics Honours) |             |                                                   |                         |                      |  |  |  |  |
|---------------------------------------------------------------------------|-------------|---------------------------------------------------|-------------------------|----------------------|--|--|--|--|
| Yr.                                                                       | Sl.No.      | Course Structure                                  | Code                    | <b>Credit Points</b> |  |  |  |  |
|                                                                           |             | SEMESTER-I                                        |                         |                      |  |  |  |  |
|                                                                           | 1           | Calculus                                          | C-1.1                   | 4+2                  |  |  |  |  |
| R                                                                         | 2           | Discrete Mathematics                              | C-1.2                   | 6                    |  |  |  |  |
| EA                                                                        | 3           | Physics                                           | GE-1.3                  | 4+2                  |  |  |  |  |
| Τ                                                                         | 4           | EVS                                               | AECC-1.4                | 6                    |  |  |  |  |
| E                                                                         |             | SEMESTER-II                                       |                         |                      |  |  |  |  |
| R                                                                         | 5           | Real Analysis                                     | C-2.1                   | 6                    |  |  |  |  |
| E                                                                         | 6           | Differential Equations                            | C-2.2                   | 4+2                  |  |  |  |  |
|                                                                           | 7           | Chemistry                                         | GE-2.3                  | 4+2                  |  |  |  |  |
|                                                                           | 8           | MIL Communication – Odia / MIL (AE)               | AECC-2.4                | 6                    |  |  |  |  |
|                                                                           |             | SEMESTER-III                                      | $\overline{\mathbf{N}}$ |                      |  |  |  |  |
|                                                                           | 9           | Theory of Real Functions                          | <b>C</b> -3.1           | 6                    |  |  |  |  |
| ~                                                                         | 10          | Group Theory – I                                  | C-3.2                   | 6                    |  |  |  |  |
| <b>V</b>                                                                  | 11          | Partial Differential Equations and System of ODEs | C-3.3                   | 4+2                  |  |  |  |  |
| ΥE                                                                        | 12          | Physics                                           | GE-3.4                  | 6                    |  |  |  |  |
| Ō                                                                         | 13          | Quantitative & Logical Thinking                   | SECC-II-3.5             | 6                    |  |  |  |  |
| Z                                                                         | SEMESTER-IV |                                                   |                         |                      |  |  |  |  |
| $\mathbf{S}$                                                              | 14          | Numerical Methods and Scientific Computing        | C-4.1                   | 4+2                  |  |  |  |  |
| E                                                                         | 15          | Topology of Metric spaces                         | C-4.2                   | 6                    |  |  |  |  |
|                                                                           | 16          | Ring Theory                                       | C-4.3                   | 6                    |  |  |  |  |
|                                                                           | 17          | Chemistry                                         | GE-4.4                  | 4+2                  |  |  |  |  |
|                                                                           | 18          | Communicative English                             | SECC-I-4.5              | 6                    |  |  |  |  |
| SEMESTER-V                                                                |             |                                                   |                         |                      |  |  |  |  |
|                                                                           | 19          | Multivariable Calculus                            | C-5.1                   | 4+2                  |  |  |  |  |
| <b>N</b> R                                                                | 20          | Linear Algebra                                    | C-5.2                   | 4+2                  |  |  |  |  |
| $\mathbf{E}_{\vec{F}}$                                                    | 21          | Linear Programming                                | DSE-5.3                 | 4+2                  |  |  |  |  |
| Τ                                                                         | 22          | Probability and Statistics                        | DSE-5.4                 | 4+2                  |  |  |  |  |
| <b>AL</b>                                                                 | SEMESTER-VI |                                                   |                         |                      |  |  |  |  |
| Z                                                                         | 23          | Complex Analysis                                  | C-6.1                   | 4+2                  |  |  |  |  |
| F                                                                         | 24          | Group Theory – II                                 | C-6.2                   | 4+2                  |  |  |  |  |
|                                                                           | 25          | Differential Geometry                             | DSE-6.3                 | 4+2                  |  |  |  |  |
|                                                                           | 26          | Project Work / Number Theory                      | DSE-6.4                 | 6 / 4+2              |  |  |  |  |

#### Notes:

- C- Core Course
- GE- Generic Elective Course
- DSE- Discipline Specific Elective Course
- AECC- Ability Enhancement Compulsory Course
- SECC- Skill Enhancement Compulsory Course
- For a 6 credit course, the total teaching hours are: Minimum- 50 Hours, Maximum-65 Hours

# **SEMESTER-I**

# C-1.1 : CALCULUS

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

### THEORY

**Objective:** The main emphasis of this course is to equip the student with necessary analytic and technical skills to handle problems of mathematical nature as well as practical problems. More precisely, main target of this course is to explore the different tools for higher order derivatives, to plot the various curves and to solve the problems associated with differentiation and integration of vector functions.

**Expected Outcomes:** After completing the course, students are expected to be able to use Leibnitz's rule to evaluate derivatives of higher order, able to study the geometry of various types of functions, evaluate the area, volume using the techniques of integrations, able to identify the difference between scalar and vector, acquired knowledge on some the basic properties of vector functions.

#### UNIT-I

Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of the type  $e^{ax+b} sin x$ ,  $e^{ax+b} cos x$ ,  $(ax + b)^n sinx$ ,  $(ax + b)^n cos x$ , concavity and inflection points, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L' Hospitals rule, Application in business ,economics and life sciences

#### UNIT-II

Riemann integration as a limit of sum, integration by parts, Reduction formulae, derivations and illustrations of reduction formulae of the type  $\int sin^n x dx$ ,  $\int cos^n x dx$ ,  $\int tan^n x dx$ ,  $\int sec^n x dx$ ,  $\int (\log x)^n x dx$ ,  $\int sin^n x cos^n x dx$ , definite integral, integration by substitution.

#### **UNIT-III**

Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution, techniques of sketching conics, reflection properties of conics, rotation of axes and second degree equations, classification into conics using the discriminant, polar equations of conics

#### UNIT-IV

Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions, tangent and normal components of acceleration

## PRACTICAL

#### (Using any software/ MATH LAB to be performed on a Computer.)

- 1. Plotting the graphs of the functions  $e^{ax+b}$ ,  $\log(ax+b)$ ,  $\frac{1}{ax+b}$ ,  $\sin(ax+b)$ ,  $\cos(ax+b)$  and |ax+b| to illustrate the effect of *a* and *b* on the graph.
- 2. Plotting the graphs of the polynomial of degree 4 and 5.
- 3. Sketching parametric curves (E.g. Trochoid, cycloid, hypocycloid).
- 4. Obtaining surface of revolution of curves.
- 5. Tracing of conics in Cartesian coordinates/polar coordinates.
- 6. C Sketching ellipsoid, hyperboloid of one and two sheets (using Cartesian co-ordinates).

#### **Books** Recommended :

- H. Anton, I. Bivens and S. Davis, *Calculus*, 10thEd., John Wiley and Sons (Asia)P. Ltd., Singapore, 2002.
- 2. *Shanti Narayan*, P. K. Mittal, Differential Calculus, S. Chand, 2014.
- 3. Shanti Narayan, P. K. Mittal, Integral Calculus, S. Chand, 2014.

- ♦ James Stewart, Single Variable Calculus, Early Transcendentals, Cengage Learning, 2016.
- G.B. Thomas and R.L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.

# **C-1.2 : DISCRETE MATHEMATICS**

#### Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** This is a preliminary course for the basic courses in mathematics and all its applications. The objective is to acquaint students with basic counting principles, set theory and logic, matrix theory and graph theory.

**Expected Outcomes:** The acquired knowledge will help students in simple mathematical modeling. They can study advance courses in mathematical modeling, computer science, statistics, physics, chemistry etc.

#### UNIT-I

Sets, relations, Equivalence relations, partial ordering, well ordering, axiom of choice, Zorn's lemma, Functions, cardinals and ordinals, countable and uncountable sets, statements, compound statements, proofs in Mathematics, Truth tables, Algebra of propositions, logical arguments, Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm, Congruence relation between integers, modular arithmetic, Chinese remainder theorem, Fermat's little theorem

#### UNIT-II

Principles of Mathematical Induction, pigeonhole principle, principle of inclusion and exclusion Fundamental Theorem of Arithmetic, permutation combination circular permutations binomial and multinomial theorem, Recurrence relations, generating functions, generating function from recurrence relations

#### UNIT-III

Matrices, algebra of matrices, determinants, fundamental properties, minors and cofactors, product of determinant, adjoint and inverse of a matrix, Rank and nullity of a matrix, Systems of linear equations, row reduction and echelon forms, solution sets of linear systems, applications of linear systems, Eigen values, Eigen vectors of a matrix

#### UNIT-IV

Graph terminology, types of graphs, sub-graphs, isomorphic graphs, Adjacency and incidence matrices, Paths, Cycles and connectivity, Eulerian and Hamiltonian paths, Planar graphs

#### **Books Recommended :**

- 1. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3<sup>rd</sup> Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.
- 2. Kenneth Rosen Discrete mathematics and its applications Mc Graw Hill Education 7<sup>th</sup> edition.
- 3. V Krishna Murthy, V. P. Mainra, J. L. Arora, An Introduction to Linear Algebra, Affiliated East-West Press Pvt. Ltd.

#### Reference Books :

 J. L. Mott, A. Kendel and T.P. Baker: Discrete mathematics for Computer Scientists and Mathematicians, Prentice Hall of India Pvt Ltd, 2008.

# GE-1.3 : MECHANICS AND PROPERTIES OF MATTER, OSCILLATION AND WAVES, THERMAL PHYSICS, ELECTRICITY AND MAGNETISM AND ELECTRONICS

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

#### THEORY

#### **UNIT-I** : Mechanics and Properties of Matter

Moment of Inertia Parallel axis and perpendicular axis theorem, M.I. of a Solid sphere and Solid cylinder, Gravitational potential and field due to a thin spherical shell and a solid sphere at external points and internal points, Relation among elastic constants, depression at free end of a light cantilever, Surface tension, pressure, difference across a curved membrane, viscous flow, Poiseulles formula.

#### **UNIT-II : Oscillation and Waves**

Simple harmonic motion, damped harmonic motion, under damped, over damped and critically damped motion, Forced vibration, Resonance, Wave equation in a medium, Velocity of Longitudinal waves in an elastic medium and velocity of transverse wave in a stretched string, Composition of SHM, Lissajous figures for superposition of two orthogonal simple harmonic vibrations (a) with same frequency, (b) frequency with 2:1.

#### **UNIT-III : Thermal Physics**

Entropy, change in entropy in reversible and irreversible process, Carnot engine and its efficiency. Carnot Theorem, Second law of thermodynamics, Kelvin-Planck, Clausius formula. Thermal conductivity, differential equation for

heat flow in one dimension, Maxwell thermodynamic relation (statement only), Clausius Clapeyron equation, Black body radiation, Planck radiation formula (No derivation).

#### UNIT-IV : Electricity and Magnetism

Gauss law of electrostatics, use of Gauss law to compute electrostatic field due to a linear charge distribution, Magnetic induction B, Lorentz force law, Biot Savarts law, Magnetic induction due to long straight current carrying conductor, and in the axis of a current carrying circular coil, Amperes Circuital law, its differential form, The law of electromagnetic equations, its differential and integral form, Maxwells electro-magnetic equations and their physical significance, Growth and decay of currents in LR and RC circuits, time constant, alternating currents in RC, RL and LCR circuits, impedance, power factor, resonance.

P-type and N-type semiconductors, PN-Junction as rectifier, Half wave and Full wave rectifiers (Bridge type), efficiency, ripple factor, use of RC, LC, and filters, working of PNP and NPN transistors, transistor configurations in CE and CB circuits and relation between  $\alpha$  and  $\beta$ . JFET, its operation and characteristics of V-I curve.

#### Text Books:

- 1. Elements of Properties of Matter D.S. Mathur (S. Chand Publication)-2010
- 2. Heat and Thermodynamics A.B. Gupta and H.B. Ray (New Central Book Agency)-2010
- 3. A Text Books book of oscillations, waves and acoustics (5thed.) M. Ghosh and D. Bhattacharya (S. Chand Publication)-2018
- 4. Electricity and magnetism- R. Murugeshan (S. Chand publishing)-2017

5. Fundamentals of Electronics-Raskhit and Chattopadhyay (New age International Publication)-2018

#### **Reference Books:**

- Physics of Degree students Vol.I M. Das, P.K. Jena etal (Sri Krishna Prakashan)-2006
- Physics of Degree students Vol.II M. Das, P.K. Jena etal (Sri Krishna Prakashan)-2006
- Waves and Oscillations (2nd ed) N. Subramaniyam and Brij Lal (Vikas Publications)-1994
- A Text Books book of Sound (2nd ed) N. Subramaniyam and Brij Lal (S. Chand Publications)-1999

## PRACTICAL

#### (Minimum 6 experiments are to be done)

- 1. To determine the moment of inertia of a fly wheel.
- 2. To determine the Young's modulus Y of a wire by Searl's method.
- 3. To determine the modulus of rigidity of a wire by Maxwell's needle/Torsion Pendulum (Dynamic method).
- 4. To determine g by bar pendulum.
- 5. To determine the value of Y of a rubber by using travelling microscope.
- 6. To determine the Rigidity of modulus by static method.
- 7. To determine the frequency of a telescope by using Sonometer.
- 8. Verification of Laws of Vibration of a string by using Sonometer.
- 9. To compare capacitances using De Sauty bridge.
- 10. To determine the Law of resistance by using Foster bridge.
- 11. Compare the specific heat of two liquids by method of Cooling.

#### Reference Books:

- Advanced Practical Physics for students, B.L. Flintand H.T. Worsnop, 1971, Asia Publishing House
- A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal (1985), Vani Publication
- A Text Books of Practical Physics, Indu Prakash and Ramakrishna, 11<sup>th</sup> Edition (2011), Kitab Mahal, New Delhi

### **AECC-1.4 : ENVIRONMENTAL STUDIES**

Full Marks – 100 Mid Sem – 20/1 hr End Sem – 80/3 hrs

#### UNIT – I

The Environment: The Atmosphere, Hydrosphere, Lithosphere, Biosphere, Ecology, Ecosystem, Biogeochemical Cycle (Carbon Cycle, Nitrogen Cycle), Environment Pollution: Air Pollution, Water Pollution, Soil Pollution, Radiation Pollution

UNIT – II

Population Ecology: Individuals, Species, Pollution, Community, Control Methods of Population, Urbanization and its effects on Society, Communicable Diseases and its Transmission, Non-Communicable Diseases

#### UNIT – III

Environmental Movements in India: Grass root Environmental movements in India, Role of women, Environmental Movements in Odisha, State Pollution Control Board, Central Pollution Control Board

#### UNIT – IV

Natural Resources: Conservation of Natural Resources, Management and Conservation of Wildlife, Soil Erosion and Conservation, Environmental Laws: Water Act, 1974, Air Act, 1981, The Wildlife (Protection) Act, 1972, Environment Protection, 1986, Natural Disasters and their Management

#### Books Recommended:

- Dash MC and Mishra PC, Man and Environment, McMillan, London.
- Mishra PC and Das MC, Environment and Society, McMillan, London.
- Odeem EP, Fundamentals of Ecology, Natraj Publication.
- Mishra DD, Fundamental Concept in Environmental Studies, S. Chand, New Delhi.
- Asthana DK and Asthana Meera, A Text book of Environmental Studies, S. Chand, New Delhi.
- Sharucah Erach, Textbook for Environmental Studies, Universities Press India Pvt. Ltd., Hyderabad.

# SEMESTER-II

### C-2.1 : REAL ANALYSIS

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of the course is to have the knowledge on basic properties of the field of real numbers, studying Bolzano-Weierstrass Theorem, sequences and convergence of sequences, series of real numbers and its convergence etc. This is one of the core courses essential to start doing mathematics.

**Expected Outcome:** On successful completion of this course, students will be able to handle fundamental properties of the real numbers that lead to the formal development of real analysis and understand limits and their use in sequences, series, differentiation and integration. Students will appreciate how abstract ideas and rigorous methods in mathematical analysis can be applied to important practical problems.

#### UNIT-I

Review of Algebraic and Order Properties of R,  $\varepsilon$ -neighborhood of a point in R, Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets, Suprema and Infima, The Completeness Property of R, The Archimedean Property, Density of Rational (and Irrational) numbers in R., Intervals, Interior point, Open Sets, Closed sets, Limit points of a set, Illustrations of Bolzano-Weierstrass theorem for sets, closure, interior and boundary of a set.

#### **UNIT-II**

Sequences and Subsequences, Bounded sequence, Convergent sequence, Limit of a sequence. Limit Theorems, Monotone Sequences, Divergence Criteria, Bolzano Weierstrass Theorem for Sequences, Cauchy sequence, Cauchy's Convergence Criterion. Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test, Alternating series, Leibniz test, Absolute and Conditional convergence.

#### UNIT-III

Limits of functions (epsilon-delta approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits, Infinite limits and limits at infinity, Continuous functions, sequential criterion for continuity & discontinuity. Algebra of continuous functions, Continuous functions on an interval, Boundedness Theorem, Maximum Minimum Theorem, Bolzano's Intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem, Monotone and Inverse Functions.

#### UNIT-IV

Differentiability of a function at a point & in an interval, Caratheodory's theorem, chain Rule, algebra of differentiable functions, Mean value theorem, interior extremum theorem. Rolle's theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities.

#### **Books Recommended** :

- 1. R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis (3<sup>rd</sup> Edition), John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. G. Das and S. Pattanayak, Fundamentals of Mathematical Analysis, TMH Publishing Co.

- S.C. Mallik and S. Arora-Mathematical Analysis, New Age International Publications.
- A.Kumar, S. Kumaresan, A basic course in Real Analysis, CRC Press, 2014.

- Brian S. Thomson, Andrew. M. Bruckner, and Judith B. Bruckner, Elementary Real Analysis, Prentice Hall,2001.
- Gerald G. Bilodeau, Paul R. Thie, G.E. Keough, An Introduction to Analysis, Jones & Bartlett, Second Edition, 2010.

# **C-2.2 : DIFFERENTIAL EQUATIONS**

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

### THEORY

**Objective:** Differential Equations introduced by Leibnitz in 1676 models almost all Physical, Biological, Chemical systems in nature. The objective of this course is to familiarize the students with various methods of solving differential equations and to have a qualitative applications through models. The students have to solve problems to understand the methods.

**Expected Outcomes:** A student completing the course is able to solve differential equations and is able to model problems in nature using Ordinary Differential Equations. This is also prerequisite for studying the course in Partial Differential Equations and models dealing with Partial Differential Equations.

#### UNIT-I

Differential equations and mathematical models, General, Particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equations and Bernoulli's equation, special integrating factors and transformations.

#### UNIT-II

Introduction to compartmental models, Exponential decay radioactivity (case study of detecting art forgeries), lake pollution model (with case study of Lake Burley Griffin), drug assimilation into the blood (case study of dull, dizzy and dead), exponential growth of population, Density dependent growth, Limited growth with harvesting.

#### UNIT-III

General solution of homogeneous equation of second order, principle of superposition, Wronskian, its properties and applications, method of undetermined coefficients, Method of variation of parameters, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation.

#### UNIT-IV

Equilibrium points, Interpretation of the phase plane, predatory-pray model and its analysis, epidemic model of influenza and its analysis, battle model and its analysis.

## PRACTICAL

#### (To be performed on a computer)

Modeling of the following problems using *Matlab / Mathematica / Maple* etc.

- 1. Plotting of second & third order solution family of differential equations.
- 2. Growth & Decay model (exponential case only).
- 3. (a) Lake pollution model (with constant/seasonal flow and pollution concentration)(b) Case of single cold pill and a course of cold pills.
  - (c) Limited growth of population (with and without harvesting).
- 4. (a) Predatory- prey model (basic volterra model, with density dependence, effect of DDT, two prey one predator).
  - (b) Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).
  - (c) Battle model (basic battle model, jungle warfare, long range weapons).
- 5. Plotting of recursive sequences.

#### **Books Recommended** :

- 1. J. Sinha Roy and S Padhy: A course of Ordinary and Partial differential equation Kalyani Publishers, New Delhi.
- 2. Belinda Barnes and Glenn R. Fulford, *Mathematical Modeling with Case Studies, A Differential Equation Approach using Maple and Matlab,* 2<sup>nd</sup> Ed., Taylor and Francis group, London and New York, 2009.

- Simmons G F, Differential equation, Tata Mc Graw Hill, 1991.
- Martin Braun, Differential Equations and their Applications, Springer International, Student Ed.
- S. L. Ross, Differential Equations, 3<sup>rd</sup> Edition, John Wiley and Sons, India.
- C.Y. Lin, Theory and Examples of Ordinary Differential Equations, World Scientific, 2011.

# GE-2.3 : ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

### THEORY

#### SECTION A: INORGANIC CHEMISTRY-I

#### **UNIT-I : Atomic Structure**

Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra.

Quantum mechanics: Time independent Schrodinger equation and meaning of various terms in it. Significance of  $\psi$  and  $\psi^2$ , Schrodinger equation for hydrogen atom. Radial and angular parts of the hydogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Quantum numbers and their significance, shapes of s, p and d atomic orbitals, nodal planes.

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbital, Anomalous electronic configurations.

#### **UNIT-II : Chemical Bonding and Molecular Structure**

Ionic Bonding: General characteristics, energy considerations. Lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Lande equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules and its applications.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds. MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for *s*-*s*, *s*-*p* and *p*-*p* combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules ( $N_2$ ,  $O_2$ ) and heteronuclear diatomic molecules (CO, NO). Comparison of VB and MO approaches.

### SECTION B: ORGANIC CHEMISTRY-I

#### **UNIT- III : Fundamentals of Organic Chemistry**

Physical Effects, Electronic Displacements: Inductive effect, Electrometric effect, Resonance and hyperconjugation. Cleavage of bonds: Homolysis and heterolysis.

Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Huckel's rule.

### Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (up to two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). D and L; cis-trans nomenclature; CIP Rules: R / S (for one chiral carbon atoms) and E / Z Nomenclature (for up to two C=C systems).

#### **UNIT-IV : Aliphatic Hydrocarbons**

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Up to 5 Carbons) *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation.

**Alkenes:** (Up to 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis-alkenes (Partial catalytic hydrogenation) and trans-alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO<sub>4</sub>) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis.

**Alkynes**: (Up to 5 Carbons) *Preparation:* Acetylene from  $CaC_2$  and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO<sub>4</sub>, ozonolysis.

#### **Recommended Text Books :**

- 1. Lee J. D., Concise Inorganic Chemistry, Wiley India, 5<sup>th</sup> Edn., 2008.
- 2. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33<sup>rd</sup> Edn., 2017.

- 3. Shriver D. E., Atkins P. W., Inorganic Chemistry, Oxford University Press, 5<sup>th</sup> Edn.
- 4. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, Pearson Education, 4<sup>th</sup> Ed. 2002.
- 5. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 6. Bhal Arun & Bhal B S., Advanced Organic Chemistry, 2<sup>nd</sup> Edition, S. Chand Publisher, 2012.
- 7. Kalsi, P. S. Stereochemistry Conformation and Mechanism; 8<sup>th</sup> Edn, New Age International, 2015.

**Reference** books :

- ♦ Das Asim K., Fundamentals of Inorganic Chemistry, Vol. II, CBS Publications, 2<sup>nd</sup> Ed. 2010.
- Pradeep's Inorganic Chemistry, Vol. I & II, Universal Book seller, 14<sup>th</sup> Ed. 2017.
- Mallick, Madan and Tuli, S. Chand Selected Topic in Inorganic Chemistry, 17<sup>th</sup> Edn. 2010.
- Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications.

### PRACTICAL

#### SECTION A: INORGANIC CHEMISTRY

#### Volumetric Analysis

- a. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- b. Estimation of oxalic acid by titrating it with KMnO<sub>4</sub>.
- c. Estimation of water of crystallization in Mohr's salt by titrating with KMnO<sub>4</sub>.
- d. Estimation of Fe(II) ions by titrating it with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> using internal indicator.
- e. Estimation of Cu(II) ions iodometrically using Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>.

#### SECTION B: ORGANIC CHEMISTRY

- a. Detection of extra elements (N, S, Cl) in organic compounds (containing up to two extra elements)
- b. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given)
  - i. Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography.
  - ii. Identify and separate the sugars present in the given mixture by paper chromatography.

#### **Reference Books:**

- Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).

# AECC – 2.4 : MIL COMMUNICATIONS – ODIA (ଯୋଗାଯୋଗ ଅନୁବିଧି, ରୀତି ଓ ମାଧ୍ୟମ)

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

୧ମ ଏକକ / ୟୁନି<mark>ଟ୍</mark> – ୧ :

<mark>ଯୋଗାଯୋ</mark>ଗର ପରିଭାଷା, ଅନୁବିଧି, ପରିସର ଓ ପ୍ରକାରଭେଦ

୨ୟ ଏକକ / ୟୁନିଟ୍ – ୨ :

/ସାକ୍ଷାତକାର, ଭାଷଣ କଳା

୩ୟ ଏକକ / ୟୁନିଟ୍ – ୩ :

ସମ୍ବାଦର ପରିଭାଷା, ପରିସର ଓ ସମ୍ବାଦ ପ୍ରସ୍ତୁତି

୪ର୍ଥ ଏକକ / ୟୁନିଟ୍ – ୪ :

ଓଡ଼ିଆ ଭାଷାର ବର୍ଷମାଳା, ବର୍ଷାଶୁଦ୍ଧିର ନିରାକରଣ । (ବନାନ ତ୍ରୁଟି - ସାଦୃଶ୍ୟଜନିତ ଅଶୁଦ୍ଧି, ଲିଙ୍ଗଗତ ଅଶୁଦ୍ଧି, ସନ୍ଧିଗତ ଅଶୁଦ୍ଧି, ସମାସଗତ ଅଶୁଦ୍ଧି, ବଚନ ଓ ବିଭକ୍ତିଗତ ଅଶୁଦ୍ଧି, ବାକ୍ୟ ବିଧିଜନିତ ଅଶୁଦ୍ଧି, ସମାର୍ଥବୋଧକ ଶଦ୍ଦାଶୁଦ୍ଧି, ପ୍ରତ୍ୟୟ ଜନିତ ଅଶୁଦ୍ଧି, ଶବ୍ଦ ସଂଯୋଗାତ୍ମକ ଓ ସ୍ୱରସଙ୍ଗତି ଜନିତ ଅଶୁଦ୍ଧି)

# ସହାୟକ ଗ୍ରନ୍କୁସୂଚୀ :

- ୧. ଯୋଗାଯୋଗ ମୂଳକ ମାତୃଭାଷା (ଓଡ଼ିଆ) ସାମଲ ବିରଞ୍ଚି ନାରାୟଣ, ସତ୍ୟନାରାୟଣ ବୁକ ଷ୍ଟୋର, କଟକ
- ୨. ସଂଯୋଗ ଅନୁବିଧି ସନ୍ତୋଷ କୁମାର ତ୍ରିପାଠୀ, ନାଳନ୍ଦା, କଟକ
- ୩. 🛛 ଭାଷଣ କଳା ଓ ଅନ୍ୟାନ୍ୟ ପ୍ରସଙ୍ଗ କୃଷଚନ୍ଦ୍ର ପ୍ରଧାନ, ସତ୍ୟନାରାୟଣ ବୁକ୍ ଷ୍ଟୋର,କଟକ
- ୪. ପ୍ରାୟୋଗିକ ଓଡ଼ିଆ ଭାଷା ଓଡ଼ିଶା ରାଜ୍ୟପାଠ୍ୟ ପୁୟକ ପ୍ରଣୟନ ଓ ପ୍ରକାଶନ ସଂସ୍ଥା, ଭୁବନେଶ୍ୱର
- ୫. ସମ୍ଭାଦ ଓ ସାମ୍ଭାଦିକତା ଚନ୍ଦ୍ରଶେଖର ମହାପାତ୍ର, ଓଡ଼ିଶା ରାଜ୍ୟ ପାଠ୍ୟପୁଞ୍ଚକ ପ୍ରଣୟନ ଓ ପ୍ରକାଶନ ସଂସ୍ଥା, ଭୁବନେଶ୍ୱର
- ୬. ନିର୍ଭୁଲ ଲେଖାର ମୂଳସୂତ୍ର ନୀଳାନ୍ଦିଭୂଷଣ ହରିଚନ୍ଦନ, ପି.ସି.ଆର ପବ୍ଲିକେସନ, ଭୁବନେଶ୍ୱର
- ୭. ସର୍ବସାର ବ୍ୟାକରଣ ନାରାୟଣ ମହାପାତ୍ର ଓ ଶ୍ରୀଧର ଦାସ, ନିୟୁ ଷ୍ଟୁଡେଣ୍ଟସ୍ ଷ୍ଟୋର, କଟକ

# ମୂଲ୍ୟ ବିଭାଜନ ପଦ୍ଧତି : (ସବୁଥିରୁ ବିକଳ୍ପ ପଡ଼ିବ)

- (କ) ପତ୍ରର ମୋଟ ନୟର ୧୦୦
- (ଖ) ଅବଃପରୀକ୍ଷା ୨୦ ଓ ମୁଖ୍ୟ ପରୀକ୍ଷା ୮୦
- (ଗ) ନିର୍ଦ୍ଧାରିତ ପାଠ୍ୟର ସବୁ ଏକକ(ୟୁନିଟ୍)ରୁ ବିକଳ୍ପସହ ଦୁଇଟି ଲେଖାଏଁ ମୋଟ ୮ଟି ୧୫ନୟର ବିଶିଷ୍ଠ ଦୀର୍ଘ ପ୍ରଶ୍ମ ପଡିବ । ବିଦ୍ୟାର୍ଥୀଙ୍କୁ ୪ଟି ପ୍ରଶ୍ୱର ଉତ୍ତର ଦେବାକୁ ହେବ । (୧୫ x ୪ = ୬୦)
- (ଘ) ନିର୍ଦ୍ଧାରିତ ପାଠ୍ୟର ସବୁ ଏକକରୁ ୧୨ଟି ଅତିସଂକ୍ଷିସ୍ତ ପ୍ରଶ୍ମ ପଡ଼ିବ । ସେଥିରୁ ୧୦ଟି ପ୍ରଶ୍ମର ଉତ୍ତର ଦେବାକୁ ହେବ ।

 $(90 \times 9 = 90)$ 

# AECC-2.4 : MIL (ALTERNATIVE ENGLISH)

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

#### Introduction:

The paper is focused upon developing one fundamental skills of Language learning; reading which needs a thorough rethink and revision. In order to build a strong base for acquisition of the communication skills, suitable reading content is selected from diverse areas in prose form. This would boost the learner's competence in expressive and comprehension skills. The well researched language exercises in the form of usage, vocabulary and grammar is the other area that should attract the teacher and learner to work out for giving decent shape to the mastery of English language.

#### UNIT - I: Short Story

- a. Jim Corbett-The Fight between Leopards
- b. Dash Benhur- The Bicycle
- c. Dinanath Pathy- George V High School
- d. Alexander Baron- The Man who knew too much
- e. Will F Jenkins- Uneasy Homecoming

#### UNIT - II: Prose

- a. Mahatma Gandhi- The way to Equal Distribution
- b. S Radhakrishnan- A Call to Youth
- c. C V Raman-Water- The Elixir of Life
- d. Harold Nicolson- An Educated Person
- e. Claire Needell Hollander- No Learning without Feeling UNIT III:
- Comprehension of a passage and answering the questions **UNIT IV:**

Language exercises-test of vocabulary, usage and grammar

#### Text Books:

1. All Stories and Prose pieces

Reference Books:

- ✤ The Widening Arc: A Selection of Prose and Stories, Ed. A R Parhi, S Deepika, P Jani, Kitab Bhavan, Bhubaneswar.
- ★ *A Communicative Grammar of English*, Geoffrey Leech.
- A University Grammar of English, Randolph Quirk and Sidney Greenbaum
- Developing Reading Skills. F. Grellet. Cambridge: Cambridge University Press, 1981.

# **SEMESTER-III**

### **C-3.1 : THEORY OF REAL FUNCTIONS**

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of the course is to have knowledge on limit theorems on functions, limits of functions, continuity of functions and its properties, uniform continuity, differentiability of functions, algebra of functions and Taylor's theorem and, its applications. The student how to deal with real functions and understands uniform continuity, mean value theorems.

**Expected Outcome**: On the completion of the course, students will have working knowledge on the concepts and theorems of the elementary calculus of functions of one real variable. They will work out problems involving derivatives of function and their applications. They can use derivatives to analyze and sketch the graph of a function of one variable, can also obtain absolute value and relative extrema of functions. This knowledge is basic and students can take all other analysis courses after learning this course.

#### UNIT-I

L' Hospital's Rules, other Intermediate forms, Cauchy's mean value theorem, Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, Relative extreme, Taylor's series and Maclaurin's series, expansions of exponential and trigonometric functions.

#### UNIT-II

Riemann integration; inequalities of upper and lower sums; Riemann conditions of integrability. Riemann sum and definition of Riemann integral through Riemann sums; equivalence of two definitions; Riemann integrability of monotone and continuous functions; Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals; Fundamental theorems of Calculus.

#### UNIT-III

Improper integrals: Convergence of Beta and Gamma functions. Pointwise and uniform convergence of sequence of functions, uniform convergence, Theorems on continuity, derivability and integrability of the limit function of a sequence of functions.

#### UNIT-IV

Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test Limit superior and Limit inferior, Power series, radius of convergence, Cauchy Hadamard Theorem, Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.

#### **Books Recommended :**

- 1. R.G. Bartle & D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons.
- 2. G. Das and S. Pattanayak, Fundamentals of mathematics analysis, TMH Publishing Co.
- 3. S. C. Mallik and S. Arora, *Mathematical analysis*, New Age International Ltd., New Delhi.

- A. Kumar, S. Kumaresan, A basic course in Real Analysis, CRC Press, 2014
- K. A. Ross, *Elementary analysis: the theory of calculus*, Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004A.Mattuck, Introduction toAnalysis, Prentice Hall
- Charles G. Denlinger, *Elements of real analysis*, Jones and Bartlett (Student Edition), 2011.

# C-3.2 : GROUP THEORY-I

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** Group theory is one of the building blocks of modern algebra. Objective of this course is to introduce students to basic concepts of group theory and examples of groups and their properties. This course will lead to future basic courses in advanced mathematics, such as Group theory-II and ring theory.

**Expected Outcomes:** A student learning this course gets idea on concept and examples of groups and their properties. He understands cyclic groups, permutation groups, normal subgroups and related results. After this course he can opt for courses in ring theory, field theory, commutative algebras, linear classical groups etc. and can be apply this knowledge to problems in physics, computer science, economics and engineering.

#### UNIT-I

Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), elementary properties of groups, Subgroups and examples of subgroups, centralizer, normalizer, center of a group

#### UNIT-II

Product of two subgroups, Properties of cyclic groups, classification of subgroups of cyclic groups, Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group

#### UNIT-III

Properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem, external direct product of a finite number of groups, normal subgroups, factor groups

#### UNIT-IV

Cauchy's theorem for finite abelian groups, group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, first, second and third isomorphism theorems.

#### **Books Recommended** :

- 1. Joseph A. Gallian, *Contemporary Abstract Algebra* (4th Edition), Narosa Publishing House, New Delhi
- 2. John B. Fraleigh, *A First Course in Abstract Algebra*, 7th Ed., Pearson, 2002.

#### **Reference Books :**

- M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- Solution to the Theory of Groups, 4th Ed., Springer Verlag, 1995.
- ♦ I. N. Herstein, *Topics in Algebra*, Wiley Eastern Limited, India, 1975.

# C-3.3 : PARTIAL DIFFERENTIAL EQUATIONS AND SYSTEM OF ODES

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

#### THEORY

**Objective:** The objective of this course is to understand basic methods for solving Partial Differential Equations of first order and second order. In the process, students will be exposed to Charpit's Method, Jacobi Method and solve wave equation, heat equation, Laplace Equation etc. They will also learn classification of Partial Differential Equations and system of ordinary differential equations.

**Expected Outcomes:** After completing this course, a student will be able to take more courses on wave equation, heat equation, diffusion equation, gas dynamics, non linear evolution equations etc. All these courses are important in engineering and industrial applications for solving boundary value problem.

#### UNIT-I

Partial Differential Equations - Basic concepts and Definitions, Mathematical Problems. First-Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations.

#### UNIT-II

Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.

#### **UNIT-III**

The Cauchy problem, Cauchy problem of an infinite string. Initial Boundary Value Problems, Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end. Equations with nonhomogeneous boundary conditions, Non-Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem, Solving the Heat Conduction problem

#### **UNIT-IV**

Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions, The method of successive approximations.

### PRACTICAL

#### LIST OF PRACTICALS (USING ANY SOFTWARE)

- 1. Solution of Cauchy problem for first order PDE.
- Finding the characteristics for the first order PDE. 2.
- Plot the integral surfaces of a given first order PDE with initial data. 3.
- Solution of wave equation  $\frac{\partial^2 u}{\partial t^2} c \frac{\partial^2 u}{\partial x^2} = 0$  for the following associated conditions 4.
  - $u(x,0) = \phi(x), u_t(x,0) = \Psi(x), x \in R, t > 0$ a.
  - $u(x,0) = \emptyset(x), u_t(x,0) = \Psi(x), u(0,t) = 0, x \in (0,\infty), t > 0$ b.
  - $u(x, 0) = \phi(x), u_t(x, 0) = \Psi(x), u_x(0, t) = 0, x \in (0, \infty), t > 0$ c.
  - $u(x,0) = \phi(x), ut(x,0) = \Psi(x), u(0,t) = 0, u(l,t) = 0, 0 < x < l, t > 0$ d.

Solution of wave equation  $\frac{\partial u}{\partial t^2} - k \frac{\partial^2 u}{\partial x^2} = 0$  for the following associated conditions a.  $u(x,0) = \phi(x), u(0,t) = a, u(l,t) = b, \ 0 < x < l, t > 0$ 5.

- $u(x, 0) = \emptyset(x), x \in R, 0 < t < T$ b.
- $u(x, 0) = \phi(x), u(0, t) = a, x \in (0, \infty), t \ge 0$ c.

#### **Books Recommended :**

- 1. Tyn Myint-U and Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th edition, Birkhauser, Indian reprint, 2014.
- 2. S.L. Ross, Differential equations, 3rd Ed., John Wiley and Sons, India,

#### **Reference Books :**

- J Sinha Roy and S Padhy: A course of Ordinary and Partial differential equation Kalyani Publishers, New Delhi, \*\*
- $\dot{\mathbf{v}}$ Martha L Abell, James P Braselton, Differential equations with MATHEMATICA, 3rd Ed., Elsevier Academic Press, 2004.
- $\div$ Robert C. Mc Owen: Partial Differential Equations, Pearson Education Inc.
- \* T Amarnath: An Elementary Course in Partial Differential Equations, Narosa Publications.

# **GE-3.4 : OPTICS, SPECIAL THEORY OF RELATIVITY, ATOMIC PHYSICS,** QUANTUM MECHANICS AND NUCLEAR PHYSICS

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical - 25/3 hrs

#### THEORY

#### UNIT-I

**Optics-I:** Elementary ideas of monochromatic aberrations and their minimization, chromatic aberration, achromatic combination, Theory of formation of primary and secondary rainbow, condition of interference, coherent sources, Youngs double slit experiment, biprism and measurement of wave length of light of by it, color of thin films and Newton's rings, Fresnel and Fraunhoffer diffraction, diffraction by single slit plane transmission grating.

**Optics-II**: Electromagnetic nature of light, polarized and unpolarized light, polarization by reflection and refraction, Brewster's Law, Mauls Law, Double refraction, Ordinary and extraordinary rays.

#### **UNIT-II Atomic Physics**

Inadequacy of classical physics, brief outline of Rayleigh Jeans theory and Planck's quantum theory of radiation, particle nature of electromagnetic radiation photo electric effect, Compton effect, dual nature of radiation, wave nature of particles, de-Broglie hypothesis, matter wave, wave-particle duality, Davisson- Germer experiment. Bohr's theory of Hydrogen atom, explanation of Hydrogen Spectra, correction for finite mass of the nucleus, Bohrs correspondence principle, limitations of Bohr's theory, Discrete energy, exchange by atom Frank Hertz experiment.

#### UNIT-III

**Quantum Mechanics :** Heisenberg's Uncertainty relation, Time dependent Schrodinger's wave equation in one dimension and three dimensions, The physical interpretation of the wave function, Probability density and probability current density, Equation of continuity, Normalization of the Wave function, Expectation value of an observable, Ehrenfest's theorem. Time independent Schrodinger's wave equation in one dimension particle in a box, energy eigen values and eigen functions.

#### UNIT-IV

**Nuclear Physics :** Properties of the nucleus Charge, Size, Spin, Magnetic Moment, Mass, Mass defect, Binding energy, Packing fraction, Nuclear force and its characteristics features, Radioactive decay laws, average life, half life, nuclear fission, nuclear fusion, Linear accelerators, and cyclotron.

**Relativity:** Galilean transformation, Newtonian relativity and its limitation, Michelson Morley experiment and it's consequence, postulates of special theory of relativity. Lorentz transformation, length contraction, time dilation, relativistic mass and momentum, mass energy relation.

#### Text Books:

1. University Physics, H. D. Young, R. A. Freedman (Person)-2017

2. Fundamentals of Physics, Resnick, Halliday, Walker (WIley)-2015

#### Reference Books:

- A Text Books book of Optics N. Subrahmanyam and Brij Lal (S.Chand Publishing)-2006
- Introduction to Special Relativity-R. Resnick (John Wiley)-2007
- Concepts of Modern Physics Arthur Beiser (McGraw Hill)-2017
- Modern Physics H.S. Mani and G.K.Mehta-2018.

### PRACTICAL

#### (Minimum 6 experiments are to be done):

- 1. Determination of E.C.E. of a Copper by taking 3readings.
- 2. Determination of Refractive index of the material of a prism using Sodium light.
- 3. To determine the wavelength of light using plane diffraction grating.
- 4. To determine the wavelength of light using Newton's ring.
- 5. Determination of refractive index of (a) glass and (b) liquid by using travelling microscope.
- 6. To plot the I-D curve and to determine the refractive index of a prism
- 7. Determination of radius of curvature of a convex/concave mirror by using Kohlrausch's method.
- 8. T o determine the magnifying power of a given telescope.
- 9. To Obtain the static characteristics of a P-N-P/N-P-N transistor/Triode Valve.
- 10. To determine the reduction factor of a tangent Galvanometer.
- 11. To study the Variation of magnetic field along the axis of a circular coil carrying current.

#### Reference Books:

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, (1971), Asia Publishing House
- A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal (1985), Vani Publication
- A Text Books of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition (2011), Kitab Mahal, New Delhi

# SECC-II-3.5 : QUANTITATIVE AND LOGICAL THINKING

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

### I. QUANTITATIVE APTITUDE & DATA INTERPRETATION

#### UNIT – I :

Whole numbers, Integers, Rational and irrational numbers, Fractions, Square roots and Cube roots, Surds and Indices, Problems on Numbers, Divisibility

Steps of Long Division Method for Finding Square Roots:

#### UNIT – II :

Basic concepts, Different formulae of Percentage, Profit and Loss, Discount, Simple interest, Ratio and Proportion, Mixture

### UNIT – III :

Time and Work, Pipes and Cisterns, Basic concepts of Time, Distance and Speed; relationship among them

#### $\mathbf{UNIT}-\mathbf{IV}$ :

Concept of Angles, Different Polygons like triangles, rectangle, square, right angled triangle, Pythagorean Theorem, Perimeter and Area of Triangles, Rectangles, Circles

UNIT – V :

Raw and Grouped Data, Bar Graphs, Pie charts, Mean, Median and Mode, Events and Sample Space, Probability

#### **II. LOGICAL REASONING**

#### UNIT – I :

Analogy basing on kinds of relationships, Simple Analogy; Pattern and Series of Numbers, Letters, Figures. Coding-Decoding of Numbers, Letters, Symbols (Figures), Blood relations

UNIT - II:

Logical Statements– Two premise argument, More than two premise argument using connectives **UNIT – III :** 

Venn Diagrams, Mirror Images, Problems on Cubes and Dices

#### **Books Prescribed** :

1. Quantitative And Logical Thinking – Odisha State Higher Education Council, Bhubaneswar

# SEMESTER-IV

### **C-4.1 : NUMERICAL METHODS AND SCIENTIFIC COMPUTING**

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

# THEORY

#### (Use of Scientific Calculator is allowed)

**Objective:** Calculation of error and approximation is a necessity in all real life, industrial and scientific computing. The objective of this course is to acquaint students with various numerical methods of finding solution of different type of problems, which arises in different branches of science such as locating roots of equations, finding solution of systems of linear equations and differential equations, interpolation, differentiation, evaluating integration.

**Expected Outcome:** Students can handle physical problems to find an approximate solution. After getting trained a student can opt for advance courses in numerical analysis in higher mathematics. Use of good mathematical software will help in getting the accuracy one need from the computer and can assess the reliability of the numerical results, and determine the effect of round off error or loss of significance.

#### UNIT-I

Rate of convergence, Algorithms, Errors: Relative, Absolute, Round off, Truncation.

Approximations in Scientific computing, Error propagation and amplification, conditioning, stability and accuracy, computer arithmetic mathematical software and libraries, visualisation, Numerical solution of non-linear equations: Bisection method, Regula- Falsi method, Secant method, Newton- Raphson method, Fixed-point Iteration method.

#### UNIT-II

Rate of convergence of the above methods. System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. Computing eigenvalues and eigenvectors

#### UNIT-III

Polynomial interpolation: Existence uniqueness of interpolating polynomials. Lagrange and Newtons divided difference interpolation, Error in interpolation, Central difference & averaging operators, Gauss-forward and backward difference interpolation. Hermite and Spline interpolation, piecewise polynomial interpolation.

#### UNIT-IV

Numerical Integration: Some simple quadrature rules, Newton-Cotes rules, Trapezoidal rule, Simpsons rule, Simpsons *3/8th* rule, Numerical differentiation and integration, Chebyshev differentiation and FFT, Richard-son extrapolation.

# PRACTICAL

### (TO BE PERFORMED ON A COMPUTER)

Use of computer aided software (CAS), for example Matlab / Mathematica / Maple / Maxima etc., for developing the following Numerical programs:

- Calculate the sum  $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N}$ . To find the absolute value of an integer. 1.
- 2.
- 3. Enter- 100 integers into an array and sort them in an ascending' order.
- 4. Any two of the following
  - a. Bisection Method
  - b. Newton Raphson Method
    - c. Secant Method
    - d. Regular Falsi Method
- 5. Gauss-Jacobi Method
- 6. SOR Method or Gauss-Siedel Method
- 7. Lagrange Interpolation or Newton Interpolation
- 8. Simpson's rule.

Note: For any of the CAS Matlab / Mathematica / Maple / Maxima etc., Data types-simple data types, floating data types, character data types, arithmetic operators and operator precedence, variables and constant declarations, expression, input/output, relational operators, logical operators and logical expressions, control statements and loop statements, Arrays should be introduced to the students.

#### **Books Recommended** :

- M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 1. New age International Publisher, India,
- Michael Heath: Scientific Computing : An introductory Survey. 2.

### **Reference Books** :

- $\dot{\mathbf{v}}$ B. Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.
- \* Kendall E. Atkinson: An Introduction to Numerical Analysis
- \* C. F. Gerald and P. O. Wheatley, App.ied Numerical Analysis, Pearson Education, India, 7th Edition, 2008
- ÷ S. D. Conte & S. de Boor: Elementary Numerical Analysis: An Algorithmic Approach.

# C-4.2 : TOPOLOGY OF METRIC SPACES

Full Marks – 100 Mid Sem – 20/1hr End Sem - 80/3 hrs

**Objective:** This is an introductory course in topology of metric spaces. The objective of this course is to impart knowledge on open sets, closed sets, continuous functions, connectedness and compactness in metric spaces.

Expected Outcomes: On successful completion of the course students will learn to work with abstract topological spaces. This is a foundation course for all analysis courses in future.

#### UNIT-I

Metric spaces, sequences in metric spaces, Cauchy sequences, complete metric spaces, open and closed balls, neighborhood, open set, interior of a set, limit point of a set, closed set, diameter of a set, Cantor's theorem,

# UNIT-II

Subspaces, Countability Axioms and Separability, Baire's Category theorem

### UNIT-III

Continuity: Continuous mappings, Extension theorems, Real and Complex valued Continuous functions, Uniform continuity, Homeomorphism, Equivalent metrics and isometry, uniform convergence of sequences of functions.

### **UNIT-IV**

Contraction mappings and applications, connectedness, Local connectedness, Bounded sets and compactness, other characterization of compactness, continuous functions on compact spaces,

#### **Books Recommended** :

1. Satish Shirali & Harikishan L. Vasudeva, Metric Spaces, Springer Verlag London (2006) (First Indian Reprint 2009)

#### **Reference Books :**

\* S. Kumaresan, Topology of Metric Spaces, Narosa Publishing House, Second Edition 2011.

# C-4.3 : RING THEORY

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** This is a second course in modern algebra which deals with ring theory. Some basics of ring theory like rings, subrings, ideals, ring homomorphisms and their properties and. This course is an integral part of any course on Modern algebra the others being Group theory and Field Theory.

**Expected Outcomes:** After completing this course, this will help students to continue more courses in advanced Ring theory modules, Galois groups.

#### UNIT-I

Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring, Ideals, ideal generated by a subset of a ring, factor rings, operations on ideals.

#### UNIT-II

Prime and maximal ideals. Ring homomorphisms, properties of ring homomorphisms, Isomorphism theorems I, II and III, field of quotients.

#### UNIT-III

Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, Unique factorization in Z[x]. UNIT-IV

Divisibility in integral domains, irreducibles, primes, unique factorization domains, Euclidean domains.

#### Books Recommended :

1. Joseph A. Gallian, *Contemporary Abstract Algebra* (4th Edition), Narosa Publishing House, New Delhi.

2. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

#### **Reference Books** :

- M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- Solution to the Theory of Groups, 4th Ed., Springer Verlag, 1995.
- I. N. Herstein, *Topics in Algebra*, Wiley Eastern Limited, India, 1975.

# GE-4.4 : CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY

Full Marks – 100 Mid Sem – 15/1hr End Sem Theory – 60/3 hrs End Sem Practical – 25/3 hrs

#### THEORY

#### SECTION A: PHYSICAL CHEMISTRY-I

#### **UNIT-I** : Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation.

Statement of Third Law of thermodynamics.

#### Chemical Equilibrium

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between  $\Delta G$  and  $\Delta Go$ , Le Chatelier's principle. Relationships between Kp, Kc and Kx for reactions involving ideal gases.

#### UNIT- II : Ionic Equilibria

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

### SECTION B: ORGANIC CHEMISTRY-II

#### UNIT-III:

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

#### Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (up to 4 carbons on benzene). Side chain oxidation of alkyl benzenes (up to 4 carbons on benzene).

#### Alkyl and Aryl Halides

**Alkyl Halides** (Up to 5 Carbons) Types of Nucleophilic Substitution ( $S_N1$ ,  $S_N2$  and  $S_Ni$ ) reactions.

Preparation: from alkenes and alcohols. Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.

**Aryl Halides** Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH<sub>2</sub>/NH<sub>3</sub> (or NaNH<sub>2</sub>/NH<sub>3</sub>).

#### UNIT- IV : Alcohols, Phenols and Ethers (Up to 5 Carbons)

**Alcohols:** Preparation: Preparation of 1°, 2° and 3° alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes and ketones, carboxylic acid and esters. Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, Alk. KMnO<sub>4</sub>, acidic dichromate, conc. HNO<sub>3</sub>). Oppeneauer oxidation Diols: (Up to 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

**Phenols:** (Phenol case) Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer Tiemann Reaction, Gattermann -Koch Reaction, **Ethers (aliphatic and aromatic):** Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): Formaldehyde, acetaldehyde, acetone and benzaldehyde Preparation: from acid chlorides and from nitriles.

Reactions – Reaction with HCN, ROH, NaHSO<sub>3</sub>, NH<sub>2</sub>-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction.

#### **Recommended Text Books:**

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6<sup>th</sup> Ed., (2006).
- 2. Principles of Physical Chemistry, Puri, Sharma & Pathania, Vishal Publishing Co, 47<sup>th</sup> Edn., 2017.
- 3. K. L. Kapoor, Text Book of Physical Chemistry, Mac Grow Hill, 3<sup>rd</sup> Edn. 2017.
- 4. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 5. Arun Bahl & B S Bahl, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.

#### **Reference Books:**

- Kheterpal S.C., Pradeep's Physical Chemistry, Vol. I & II, Pradeep Publications.
- Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications

### PRACTICAL

#### Section A: Physical Chemistry

#### Thermochemistry (any three)

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO<sub>3</sub>, NH<sub>4</sub>Cl).
- 5. Determination of enthalpy of hydration of copper sulphate.
- 6. Study of the solubility of benzoic acid in water and determination of  $\Delta H$ .

### Ionic equilibria

#### pH measurements

a.

b.

- Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
- Preparation of buffer solutions:
  - Sodium acetate-acetic acid
  - Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

#### Section B: Organic Chemistry

- 1. Purification of organic compounds by crystallization (from water) and determination of melting.
- 2. Preparations, recrystallisation, determination of melting point and calculation of quantitative yields of the followings:
  - a. Bromination of Phenol/Aniline
  - b. Benzoylation of amines/phenols
  - c. Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone

#### **Reference Books**

- A.I. Vogel: Textbook of Practical Organic Chemistry, 5th edition, Prentice-Hall.
- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- Khosla, B.D.; Garg, V.C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi (2011).
- Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).

# SECC-I-4.5 : COMMUNICATIVE ENGLISH

(Enriching Linguistic Knowledge & Communication Proficiency)

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

#### UNIT-I : BUSINESS COMMUNICATION AND GRAMMAR

Why English Communication is Essential and How to Improve the Skill?

Introduction to Voice and Accent, Why do we have such different accents?, Accent Training-Consequences, Voice and accent in the Enterprise Industry, Globally Comprehensible Accent, Introduction to Phonetics, International Phonetic Alphabet

Consonant Sounds

Vowels

Diphthongs

A Few Phonic Rules

Word Stress: Syllables

Intonation : Intonation and Stress

Pacing and Chunking : Common Patterns of Pacing, Importance of Chunking

Fluency Indianisms : Errors relating to Grammar, Vocabulary

#### UNIT-II : GRAMMAR

English: Spoken Versus Written Communication

Nouns : Kinds of Nouns, Activity 3: Noun Ping-pong, Nouns-Number, Noun-Gender, Countable and Uncountable Nouns

Pronouns : Reflexive Pronouns, Relative Pronouns, Demonstrative Pronouns, Interrogative Pronouns, Indefinite pronouns, Activity 4: Sentence Auction

Adjectives : Activity 5 : Picture perfect, Positioning of adjectives, Comparative Degrees of Adjectives, Order of Adjectives

Adverbs : Kinds of Adverb, Degree of Comparison, Word Order with Adverbs, Activity 6: Relay Race

Prepositions : Activity 7: Treasure Hunt, Activity 8: Route Map, Prepositions with Adjectives, Nouns and Verbs

Conjunctions : Coordinating conjunctions, Subordinating Conjunctions, Correlative Conjunctions, Connecting Adverbs, Activity 9: The Socks Story

Verbs : Verb Classification, List of irregular verbs, Activity 10: Word Search

Subject and verb agreement, Activity 11: Tossed Word Salad, Activity 12: The Sentence Pageant Determiners and Modifiers : Kinds of determiners, The Definite and the Indefinite Article, Definite Article: The, Activity 13: Proof Reading

Tenses : Reference Table, Present Tense, Activity 14: Instruction Manual, Activity 15: Commentary, Past Tense, Activity 16: The Chain List, Activity 17: Transcription, Future Tense, Activity 18: This Week for You, Activity 19: Verb Grand Prix

Punctuation : Forms of Punctuation

#### **UNIT-III : READING COMPREHENSION**

Reading – A 7 Step Process, Techniques to enhance students' reading skills, Types of reading skills, Skimming, Scanning, Extensive reading, Intensive reading, Three levels of Reading, Improving your reading speed, Reading Comprehension Practice Exercises

#### Text Books:

1. Communicative English – Odisha State Higher Education Council, Bhubaneswar

# **SEMESTER-V**

# C-5.1 : MULTIVARIATE CALCULUS

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of this course to introduce functions of several variable to a student after he has taken a course in one variable calculus. The course will introduce partial derivatives and several of its consequences and will introduce double and triple integrals along with line integrals which are fundamental to all streams where calculus can be used.

**Expected Outcomes:** After reading this course a student will be able to calculate partial derivatives, directional derivatives, extreme values and can calculate double, triple and line integrals. He will have idea of basic vector calculus including green's theorem, divergence theorem and stokes theorem. He can take courses in calculus on manifolds, Differential geometry and can help in numerical computations involving several variables.

#### UNIT-I

Functions of several variables, limit and continuity of functions of two variables. Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes.

#### UNIT-II

Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.

Definition of vector field, divergence and curl, Double integration over rectangular region, double integration over nonrectangular region. Double integrals in polar co-ordinates

#### UNIT-III

Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates. Change of variables in double integrals and triple integrals.

#### UNIT-IV

Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stokes' theorem, The Divergence theorem.

#### **Books Recommended :**

- 1. M. J, Strauss, G. L. Bradley and K. J. Smith, Calculus (3rd Edition), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2007.
- 2. S C Mallik and S Arora: Mathematical Analysis, New Age International Publications

#### Reference Books :

- G.B. Thomas and R.L. Finney, *Calculus*, 9<sup>th</sup> Ed., Pearson Education, Delhi, 2005.
- E. Marsden, A.J. Tromba and A. Weinstein, *Basic Multivariable Calculus*, Springer(SIE). Indian reprint, 2005.
- ✤ James Stewart, Multivariable Calculus, Concepts and Contexts, 2<sup>nd</sup> Ed., Brooks/Cole, Thomson Learning, USA, 2001.
- S Ghorpade, B V Limaye, Multivariable calculus, Springer international edition

# C-5.2 : LINEAR ALGEBRA

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** Linear algebra is a basic course in almost all branches of science. A full course in undergraduate program will help students in finding real life applications later. The objective of this course is to introduce a student the basics of linear algebra and some of its application

**Expected Outcomes:** The student will use this knowledge wherever he/she goes after undergraduate program. It has applications in computer science, finance mathematics, industrial mathematics, bio mathematics and what not.

#### UNIT-I

Vector spaces, subspaces, examples, algebra of subs paces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Linear transformations, null space, range, rank and nullity of a linear transformation.

#### UNIT-II

Matrix representation of a linear transformation, Algebra of linear transformations, Isomorphisms, Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix, Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators, Basics of Fields.

#### UNIT-III

Eigenspaces of a linear operator, diagonalizability. Invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, Inner product spaces and norms, Gram-Schmidt orthogonalization process

#### UNIT-IV

Orthogonal complements, Bessel's inequality, the adjoint of a linear operator, Least Squares Approximation, minimal solutions to systems of linear equations, Normal and self-adjoint operators, Orthogonal projections and Spectral theorem.

#### Books Recommended :

1. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, *Linear Algebra* (4<sup>th</sup> Edition), Pearson, 2018. *Reference Books :* 

Rao A R and Bhim Sankaram Linear Algebra Hindustan Publishing house.

Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

# DSE-5.3 : LINEAR PROGRAMMING

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of this course is to familiarize industrial problems to students with various methods of solving Linear Programming Problems, Transportation Problems, Assignment Problems and their applications. Also, students will know the application of linear Programming method in Game Theory.

**Expected Outcomes:** More knowledge on this topic in higher studies will help students to deal industrial models. This is also prerequisite for studying advanced courses in Nonlinear Programming Problems, Inventory Control Problem and Queuing Theory etc.

#### UNIT-I

Introduction to linear Programming problem, Theory of simplex method, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two-phase method, Big-M method and their comparison.

#### UNIT-II

Duality, formulation of the dual problem, primal-dual relationships, Fundamental Theorem of Duality, economic interpretation of the dual.

#### UNIT-III

Transportation problem and its mathematical formulation, northwest-corner method least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem. Assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.

#### UNIT-IV

Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.

#### Books Recommended :

1. Kanti Swarup, Operations Research, Sultan Chand & Sons, New Delhi. Books.

- S. Hillier and G.J. Lieberman, Introduction to Operations Research- Concepts and Cases (9<sup>th</sup> Edition), TataMcGraw Hill, 2010.
- Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear Programming and Network Flows* (2<sup>nd</sup> edition), John Wiley and Sons, India, 2004.
- G. Hadley, *Linear Programming*, Narosa Publishing House, New Delhi, 2002.
- Hamdy A. Taha, *Operations Research: An Introduction* (10th edition), Pearson, 2017.

# **DSE-5.4 : PROBABILITY AND STATISTICS**

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of the course is to expertise the student to the extensive role of statistics in everyday life and computation, which has made this course a core course in all branches of mathematical and engineering sciences. **Expected Outcome:** The students shall learn probability and statistics for various random variables, multivariate distributions, correlations and relations. He shall learn law of large numbers and shall be able to do basic numerical calculations.

#### UNIT-I

Probability: Introduction, Sample spaces, Events, probability of events, rules of probability, conditional probability, independent events, Bayes's theorem, Probability distributions and probability densities: random variables, probability distributions, Continuous random variables, probability density functions, Multivariate distributions, joint distribution function, joint probability density function, marginal distributions, conditional distributions, conditional density, The theory in practice, data analysis, frequency distribution, class limits, class frequencies, class boundary, class interval, class mark, skewed data, multimodality, graphical representation of the data, measures of location and variability.

Population, sample, parameters

#### **UNIT-II**

Mathematical Expectation: Introduction, expected value of random variable, moments, Chebyshev's theorem, moment generating functions, product moments, moments of linear combinations of random variables, conditional expectations, the theory in practice, measures of location, dispersion

#### UNIT-III

Special probability distributions: Discrete Uniform distribution, binomial distribution, Negative binomial, geometric, hypergeometric, poisson, multinomial distribution, multinomial. Special probability densities; Uniform distribution, gamma, exponential, gamma, chi-square, beta distribution, normal, normal approximation to binomial, bivariate normal, Functions of random variables, distribution function technique, transformation technique-one variable, several

variables, moment generating function technique

#### UNIT-IV

Sampling distributions: population distribution, random sample, sampling distribution of mean, Central Limit theorem, Sampling distribution of the mean: finite populations, chi-square, t, F distributions, regression and correlation: Bivariate regression, regression equation, Linear regression, method of least squares.

#### Books Recommended :

1. Irwin Miller and Marylees Miller, John E. Freund's Mathematical Statistics with Applications (8thEdition), Pearson, Asia, 2014.

#### **Reference Books** :

- Robert V. Hogg, Joseph W. McKean and Allen T. Craig, *Introduction to Mathematical Statistics*, Pearson Education, Asia, 2007.
- Alexander M. Mood, Franklin A. Graybill and Duane C. Boes, *Introduction to the Theory of Statistics*, (3<sup>rd</sup> Edition), Tata McGraw-Hill, Reprint 2007.
- Sheldon Ross, *Introduction to Probability Models* (9<sup>th</sup> Edition), Academic Press, Indian Reprint, 2007.

# **SEMESTER-VI**

## C-6.1 : COMPLEX ANALYSIS

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objectives:** The objective of the course is aimed to provide an introduction to the theories for functions of a complex variable. The concepts of analyticity and complex integration are presented. The Cauchy's theorem and its applications, the calculus of residues and its applications are discussed in detail.

**Expected Outcomes:** Students will be able to handle certain integrals not evaluated earlier and will know a technique for counting the zeros of polynomials. This course is prerequisite to many other advance analysis courses.

#### UNIT-I

Complex Numbers and Complex plane: Basic properties, convergence, Sets in the Complex plane, Functions on the Complex plane: Continuous functions, holomorphic functions, power series, Integration along curves.

#### UNIT-II

Cauchy's Theorem and Its Applications: Goursat's theorem, Local existence of primitives and Cauchy's theorem in a disc, Evaluation of some integrals, Cauchy's integral formulas.

#### **UNIT-III**

Morera's theorem, Sequences of holomorphic functions, Holomorphic functions defined in terms of integrals, Schwarz reflection principle, Zeros and poles.

#### UNIT-IV

Meromorphic Functions and the Logarithm: The residue formula, Examples, Singularities and meromorphic functions, The argument principle and applications, The complex logarithm.

#### **Books Recommended** :

1. Elias M. Stein & Rami Shakarchi, Complex Analysis, Princeton University press, Princeton and Oxford, 2003. *Reference Books :* 

- James Ward Brown and Ruel V. Churchill, *Complex Variables and Applications* (Eighth Edition), McGraw -Hill International Edition, 2009.
- G. F. Simmons, Introduction to Topology and Modern Analysis, Mcgraw-Hill, Edition 2004.
- ✤ Joseph Bak and Donald 1. Newman, *Complex analysis* (2<sup>nd</sup> Edition), Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., New York, 1997.

# C-6.2 : GROUP-THEORY-II

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** The objective of this course is to be exposed to more advanced results in group theory after completing a basic course. The course introduces results on automorphism, commutator subgroup, group action Sylow theorems etc. **Expected Outcomes:** The knowledge of automorphism helps to study more on field theory. Students learn on direct products, group actions, class equations and their applications with proof of all results. This course helps to opt for more advanced courses in algebra and linear classical groups.

#### UNIT-I

Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups. characteristic subgroups.

#### UNIT-II

Commutator subgroup and its properties, Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.

#### UNIT-III

Group actions, stabilizers and kernels, permutation representation associated with a given group action, Application of group actions: Generalized Cayley's theorem, Index theorem.

#### UNIT-IV

Groups acting on themselves by conjugation, class equation and consequences, conjugacy in  $S_n$ , p - groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of  $A_n$  for  $n \ge 5$ , non-simplicity tests.

#### **Books Recommended** :

1. John B. Fraleigh, A First Course in Abstract Algebra, Narosa Publishing House, New Delhi.

2. Joseph A. Gallian *Contemporary Abstract Algebra* (4<sup>th</sup> Edition), Narosa Publishing House, New Delhi.

- M. Artin, *Abstract Algebra*, 2<sup>nd</sup> Ed., Pearson, 2011.
- David S. Dummit and Richard M. Foote, Abstract Algebra, 3<sup>rd</sup> Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2004.
- Sons, New York Inc., 2000.

# **DSE-6.3 : DIFFERENTIAL GEOMETRY**

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective:** After learning methods on curve tracing and Analytic Geometry, the objective of this course is to teach Differential geometry of curves and surfaces which trains a student using tools in calculus to derive intrinsic properties of plain curves and space curves.

**Expected Outcome:** After completing this course a student will learn on serret-Frenet formulae, relation between tangent, normal and binormals, first and second fundamental forms and ideas on various curvatures. He has scope to take more advanced courses in surface theory and geometry.

#### UNIT-I

Theory of Space Curves: Space curves, Planer curves, Curvature, torsion and Serret-Frenet formulae. Osculating circles, Osculating circles and spheres. Existence of space curves.

#### UNIT-II

Evolutes and involutes of curves. Theory of Surfaces: Parametric curves on surfaces, surfaces of revolution, helicoids, Direction coefficients. First and second Fundamental forms.

#### **UNIT-III**

Principal and Gaussian curvatures. Lines of curvature, Euler's theorem. Rodrigue's formula, Conjugate and Asymptotic lines. Developables: Developable associated with space curves and curves on surfaces, Minimal surfaces.

#### UNIT-IV

Geodesics: Canonical geodesic equations. Nature of geodesics on a surface of revolution. Clairaut's theorem. Normal property of geodesics. Torsion of a geodesic. Geodesic curvature. Gauss-Bonnet theorem. Surfaces of constant curvature.

#### **Books Recommended** :

1. T.J. Willmore, *An Introduction to Differential Geometry*, Dover Publications, 2012.

#### Reference Books :

- A. Pressley, Elementary Differential Geometry, Springer Internationl Edition, 2014.
- O'Neill, *Elementary Differential Geometry*, 2nd Ed., Academic Press, 2006.
- C.E. Weatherburn, *Differential Geometry of Three Dimensions*, Cambridge University Press 2003.
- D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988.

# **DSE-6.4 : NUMBER THEORY**

Full Marks – 100 Mid Sem – 20/1hr End Sem – 80/3 hrs

**Objective**: The main objective of this course is to build up the basic theory of the integers, prime numbers and their primitive roots, the theory of congruence, quadratic reciprocity law and number theoretic functions, Fermat's last theorem, to acquire knowledge in cryptography specially in RSA encryption and decryption.

**Expected Outcomes**: Upon successful completion of this course students will able to know the basic definitions and theorems in number theory, to identify order of an integer, primitive roots, Euler's criterion, the Legendre symbol, Jacobi symbol and their properties, to understand modular arithmetic number-theoretic functions and apply them to cryptography.

#### UNIT- I

Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese remainder theorem, Fermat's little theorem, Wilson's theorem. **UNIT-II** 

Number th'e-10.retic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius inversion formula, the greatest integer function, Euler's phi-function, Euler's theorem, reduced set of residues, some properties of Euler's phi-function.

#### **UNIT-III**

Order of an integer modulo *n*, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol, Jacobi symbol and their properties, quadratic reciprocity, quadratic congruences with composite moduli.

#### UNIT-IV

Affine ciphers, Hill ciphers, p vg h v g gv ublic key cryptography, RSA encryption and decryption, the equation  $x^2 + y^2 = z^2$ , Fermat's Last Theorem.

#### **Books Recommended :**

1. David M.Burton, *Elementary Number Theory* (6thEdition), Tata McGraw-Hill Edition, Indian reprint, 2007. *Reference Books* :

- \* Thomas Koshy, *Elementary Number Theory with Applications* (2nd Edition), Academic Press, 2007.
- Neville Robinns, Beginning Number Theory (2ndEdition), Narosa Publishing House Pvt. Limited, Delhi, 2007.

#### OR

### PROJECT

#### Guidelines for +3 (CBCS) Under Graduate (B.A./B.Sc.) Mathematics (Honours) Project

- 1. Any student registering for doing project is required to inform the HOD, Mathematics the name of his/her project supervisor(s) at the time of pre-registration.
- 2. By the last date of add and drop, the student must submit the "Project Registration Form", appended as Annexure-I to this document, to the HOD, Mathematics. This form requires a project title, the signature of the student, signature(s) of the supervisor(s) and the signature of the HOD, Mathematics of the college/university.
- 3. The project supervisor(s) should normally be a faculty member(s) of the Department of Mathematics and the topic of the project should be relevant to Mathematical Sciences. If a student desires to have a Project Supervisor from another department of the institute, the prior approval for the same should be sought from the HOD, Mathematics.
- 4. A student may have at the most two Project Supervisors. If a student desires to have two supervisors, at least one of these should be from the Department of Mathematics.
- 5. The student(s) will be required to submit one progress report and a final report of the Project to the HOD, Mathematics. The progress report is to be submitted in the sixth week of the semester in which the project is undertaken. The hard copy and an electronic version of the final report of the project should be submitted two weeks before the end semester examination of the sixth semester. In addition the student will be required to make an oral presentation in front of a committee (Under Graduate (B.A./ B.Sc.) Mathematics (Honours) Project committee of the college in which supervisor is one of the members) constituted for this purpose by the Department of Mathematics of the college.
- 6. The student is expected to devote about 100 hours. The project will be evaluated by a committee of faculty members at the end of the sixth semester. The committee will be constituted by the Under Graduate (B.A./B.Sc.) Mathematics (Honours) Project committee of the college keeping in mind the areas of project they will cover.
- 7. In each semester the grade of a student will be awarded by the committee in consultation with his/her project supervisor(s). The project is evaluated on the basis of the following components: First Progress Reports: 20%; second/Final Report: 30%; Presentation: 30%; Viva: 20%.
- 8. Project progress reports should normally be no longer than 250 words and final report should not be longer than 40 A4 size pages in double spacing. Each final project report need to contain the following: (i) Abstract (ii) Table of contents (iii) Review of literature (iv) Main text (v) List of references. It may be desirable to arrange the main text as an introduction, the main body and conclusions.

#### **GUIDELINES FOR STRUCTURING CONTENTS**

#### Sequence of Contents:

The following sequence for the thesis organization should be followed:

| (i) Preliminaries        | Title Page                                      |
|--------------------------|-------------------------------------------------|
|                          | Certificate                                     |
|                          | Abstract/Synopsis                               |
|                          | Acknowledgement and/ or Dedication              |
|                          | Table of Contents                               |
|                          | List of Figures, Tables, Illustrations,         |
|                          | Symbols, etc (wherever applicable)              |
| (ii) Text of Thesis      | Introduction                                    |
|                          | The body of the thesis, summary and conclusions |
| (iii) Reference Material | List of References, Bibliography                |
| (iv) Appendices          |                                                 |

### NOTE:

- 1. *Synopsis/Abstract* should be self-complete and contain no citations for which the thesis has to be referred.
- 2. The Text of the Thesis
  - (a) Introduction:

Introduction may be the first chapter or its first major division. In either case, it should contain a brief statement of the problem investigated. It should outline the scope, aim, general character of the research and the reasons for the student's interest in the problem.

(b) The body of Thesis

This is the substance of the dissertation inclusive of all divisions, subdivisions, tables, figures, etc.

(c) Summary and conclusions

If required, these are given as the last major division (chapter) of the text. A further and final subdivision titled *"Scope* for Further Work" may follow.

- (d) Reference material
- The list of references should appear as a consolidated list with references listed either alphabetically or sequentially as they appear in the text of the thesis.

For referencing an article in a scientific journal the suggested format should contain the following information: authors, title, name of journal, volume number, page numbers and year. For referencing an article published in a book, the suggested format should contain, authors, the title of the book, editors, publisher, year, page number of the article in the book being referred to. For referencing a thesis the suggested format should contain, author, the title of thesis, where thesis was submitted or awarded, year.

| ANNEXURE-I<br>Department of Mathematics |  |
|-----------------------------------------|--|
| Project Registration Form               |  |
|                                         |  |
|                                         |  |
|                                         |  |
|                                         |  |
|                                         |  |
|                                         |  |

| Name of the college/university | :    |
|--------------------------------|------|
| Name of the student            | :    |
| Roll No.                       | :    |
| e-mail                         | :    |
| Name of the supervisor(s)      | :    |
|                                |      |
| Department(s)                  |      |
| e-mail(s)                      |      |
| Title of the Project           | J: T |
| Signature of the Student       |      |

| 0   |        |       |        |        |   |  |
|-----|--------|-------|--------|--------|---|--|
| Sig | nature | of su | pervis | sor(s) | : |  |

Signature of HOD, Mathematics

\* \* \*

(i) (ii)